Supplemental Material # Who Adopts Improved Fuels and Cookstoves? A Systematic Review Jessica J. Lewis¹, Subhrendu K. Pattanayak^{1,2,3*} *Corresponding author: Duke University, PO Box 90312, Durham, NC 27708-0312. Tel. 919-613-9306; Fax 919-684-9940. Email address: subhrendu.pattanayak@duke.edu ¹Nicholas School of the Environment, Duke University, Durham, NC 27708 ²Sanford School of Public Policy, Duke University, Durham, NC, 27708 ³Global Health Institute, Duke University, Durham, NC 27708 ### **Table of Contents** | Search Strategy Employed to Search the ScienceDirect Database: | 2 | |---|---| | Table 1. Variables Merged for Systematic Review | 3 | | Table 2. Improved Cookstove Analyses | | | Table 3. Results of Vote-Counting for Improved Cookstove Analyses | | | Table 4. Fuel Choice Analyses | | | Table 5. Results for Fuel Choice Analyses | | #### **Search Strategy Employed to Search the ScienceDirect Database:** - "cookstove" AND "adoption" AND "regression" in all fields - Dissemination and regression and cookstove all fields - "fuel choice" (title, keywords, abstract) AND cooking AND regression (all fields) - "fuel choice" (title, keywords, abstract) AND biomass AND regression (all fields) - Household AND energy AND fuel AND choice OR switch OR switching (title, keywords, abstract) AND regression (all fields) - Residential AND energy AND fuel AND choice OR switch OR switching (title, keywords, abstract) AND regression (all fields) - domestic AND energy AND fuel AND choice OR switch OR switching (title, keywords, abstract) AND regression (all fields) - "fuel switching" (title, keywords, abstract) and regression (all fields) - "energy ladder" (title, keywords, abstract) and regression (all fields) - Improved cookstove (title, keywords, abstract) and adoption and regression (all fields) - Charcoal (title, abstract, keywords) and household and regression (all fields) - solar and energy and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - photovoltaic and energy and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - electricity and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - biogas and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - biogas and adoption (title, abstract, keywords) AND regression (all fields) - fuel and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - energy and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - cookstove and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - biomass and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) - fuelwood and adoption or switch or switching or choice or choose (title, abstract, keywords) AND household or domestic or residential AND regression (all fields) | | l, Table 1. Variables Merged for Systematic Review | |-----------------------|---| | Final Variable of | Variables from included studies merged to form final variable in systematic | | Interest | review | | Demographics | | | Age | Age of head of HH | | | Age of head of HH, if >30 | | | Wife's age | | | Mean household age | | Children | Presence of children in HH (yes) | | | # children | | | Proportion of children under 15 | | Household Size | HH size | | | HH size >=10 | | Hindu | Hindu | | | Non-Hindu* | | Muslim | Muslim | | Socio-Economic Status | (SES) | | Income | Income | | | Expenditure | | | Land under household management (proxy for income) | | | Wealth (including assets) | | | Profit from household production | | | Income per capita | | | Expenditure per capita | | | High income category | | | Electric goods (both electricity connection and ownership of electric | | | appliances) | | Number of Rooms in | Number of rooms in house | | House | | | Head of Household | Higher Education of Head of HH | | Education | Education of Head of HH (years), | | | Head of HH secondary education | | | Head of HH primary education | | | # of people in household with education (primary and higher) | | | Max education in HH is secondary | | | # years of education of everyone in household | | | Max education in household (# years) | | | Head of HH Illiterate* | | Female Education | # of years of female head of HH's education | | | Wife's educational level | | | Wife Illiterate* | | | Wife secondary or higher education | | Male Education | Husband's education, primary | | | Education of respondent's husband/father | | | # years education of male head of HH | | | Husband illiterate* | | | rassaria miterate | Supplemental Material, Table 1. Variables Merged for Systematic Review (Continued) | Final Variable of | Variables from included studies merged to form final variable in systematic | |---------------------------------|---| | Interest | review | | Gender of Head of | Female head of HH | | Household | Male head of HH* | | Self Employed | Self Employed | | Agricultural Laborer | Agricultural Laborer | | | Farming household | | | "Does HH earn income from cotton?" | | Casual Laborer | Casual Laborer | | Rural | Rural | | Urban | Urban | | Socially Mariginalized | Forward Caste* | | | Scheduled Caste/Tribe | | | Lower Caste Dummy | | | Ethnic Group | | | Indigenous | | Access to credit | Access to credit | | Price | | | Wood Price | Wood price | | Coal Price | Coal price | | Kerosene Price | Market price of kerosene | | | Ratio of kerosene to electricity price | | | Kerosene expenditure | | LPG Price | LPG Price | | Electricity Price | Price of electricity | | Wood Availability | Availability of wood is good | | | Community median distance to firewood | | | Forest in the area | | | Distance from fuelwood entry to town | | | Distance to Forest | | LPG Availability | Availability of LPG is good | | Electricity Availability | Electricity in home | | | Village electrified | | | Electricity available | ^{*}Denotes a reverse-merge, in which direction of effect was reversed to preserve consistency in direction of effect ## Supplemental Material, Table 2. Improved Cookstove Analyses | Author (s) | Year of
Pub. | Study | Country | Type of Cleaner
Technology
(Stove Fuel) | Statistical
Model | Sample
size
(HH) | #
Covaria
tes | |---|-----------------|--|-------------------------------------|---|--|------------------------|---------------------| | Amacher et al. | 1992 | The adoption of consumption technologies under uncertainty: a case of improved stoves in Nepal | nNepal | Improved
Cookstove
(Unspecified) | Probit | 99 | 6 | | Amacher et al. | 1996 | Household fuelwood demand
and supply in Nepal's Tarai
and Mid-Hills: Choice
between cash outlays and
labor opportunity | dNepal: Tara
(Gangetic
Plain) | i Improved
Cookstove
(Unspecified) | Probit | 286 | 13 | | Amacher et al. | 1996 | Household fuelwood demand
and supply in Nepal's Tarai
and Mid-Hills: Choice
between cash outlays and
labor opportunity | dNepal: Mid-
Hills | Improved
Cookstove
(Unspecified) | Probit | 240 | 12 | | Damte and Koch | 2011 | Clean Fuel Saving Technology
Adoption in Urban Ethiopia | / Ethiopia | Mirt Improved
Cookstove
(Charcoal) | Weibull
Regression
Model | 1557 | 15 | | Damte and Koch | 2011 | Clean Fuel Saving Technology
Adoption in Urban Ethiopia | / Ethiopia | Lakech Improved
Cookstove
(Biomass) | Weibull
Regression
Model | 1557 | 15 | | Edwards &
Langpap | 2005 | Startup Costs and the
Decision to Switch from
Firewood to Gas Fuel | Guatemala
(Urban
Sample) | Improved
Cookstove
(Gas) | Full
Information
Maximum
Likelihood | 3,424 | 8 | | Edwards &
Langpap | 2005 | Startup Costs and the
Decision to Switch from
Firewood to Gas Fuel | Guatemala
(Rural
Sample) | Improved
Cookstove
(Gas) | Full
Information
Maximum
Likelihood | 3,852 | 8 | | El Tayeb Muneer
& Mukhtar
Mohamed | 2003 | Adoption of biomass improved cookstoves in a patriarchal society: an example from Sudan | Sudan | Improved
Cookstove
(Biomass) | Linear
Regression | 300 | 10 | | Gebreegziabher
et al. | 2009 | Urban Energy Transition and
Technology Adoption: The
case of Tigrai, Northern
Ethiopia | Ethiopia | Improved Mitad
Cookstoves
(Electric) | Probit | 350 | 8 | | Pine | 2011 | Adoption and use of improved biomass stoves in Rural Mexico | Mexico | Improved Patsari
Cookstove
(Biomass) | Multinomial logistic regression | 101 | 11 | | Wendland et al. | 2011 | Democracy and Dictatorship:
Comparing household
innovation across the border
of Benin and Togo | Togo | Improved
Cookstove
(Unspecified) | Probit | 135 | 11 | Supplemental Material, Table 3. Results of Vote-Counting for Improved Cookstove Analyses (n=11) | Category | Den | nograp | hics | | | | | SES | | | | | | | Pri | ice | | |
------------------------------------|-----|----------|---------|--------|----------|------------|------------|-----------|------------|------------|------------|-------------|------------|------------|-------------|-----------|-------------|-------------| | Variable | Age | Children | HH Size | Income | HH Educ. | Fem. Educ. | Male Educ. | Female HH | Self Empl. | Agri. Lab. | Soc. Marg. | Credit Acc. | Wood Price | Coal Price | Kero. Price | LPG Price | Elec. Price | Wood Avail. | | Included | 4 | 3 | 6 | 9 | 3 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 6 | 2 | 3 | 2 | 2 | 2 | | Included % | 36 | 27 | 55 | 82 | 27 | 18 | 18 | 18 | 9 | 9 | 27 | 18 | 55 | 18 | 27 | 18 | 18 | 18 | | Positive
Signif. % | 25 | 33 | 67 | 67 | 67 | 50 | 100 | 50 | 0 | 0 | 0 | 100 | 67 | 50 | 0 | 0 | 0 | 50 | | Positive Insignif. % | 25 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 100 | 100 | 0 | 0 | 33 | 0 | 67 | 0 | 0 | 0 | | Positive
Total % | 50 | 33 | 67 | 67 | 67 | 100 | 100 | 50 | 100 | 100 | 0 | 100 | 100 | 50 | 67 | 0 | 0 | 50 | | Negative
Signif. % | 50 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 0 | 0 | 50 | 33 | 100 | 50 | 50 | | Negative Insignif. % | 0 | 67 | 33 | 22 | 33 | 0 | 0 | 50 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | | Negative
Total % | 50 | 67 | 33 | 33 | 33 | 0 | 0 | 50 | 0 | 0 | 100 | 0 | 0 | 50 | 33 | 100 | 100 | 50 | | Signif. %
(included
studies) | 75 | 33 | 67 | 78 | 67 | 50 | 100 | 50 | 0 | 0 | 67 | 100 | 67 | 100 | 33 | 100 | 50 | 100 | | Signif. %
(all
studies) | 27 | 9 | 36 | 64 | 18 | 9 | 18 | 9 | 0 | 0 | 18 | 18 | 36 | 18 | 9 | 18 | 9 | 18 | Positive and negative percentages are calculated as (number of votes)/(number of studies including the variable). Abbreviations: HH Educ.= Household Education; Fem Educ.= Female Education; Male Educ.= Male Education; Female HH= Female Head of Household; Soc. Marg.= Socially Marginalized Group; Self Empl.=Self Employed; Agri. Lab.=Agricultural Laborer; Credit Acc.= Access to Credit; Kero.Price= Price of Kerosene; Elec. Price=Price of Electricity; Wood Avail.=Wood Availability | Supplement | al Mate | erial, Table 4. Fuel Choice An | alyses (n=135 | | | | | |---------------------------|--------------------|---|---------------------------------|--|------------------------|------------------------|----------| | Author (s) | Date
of
Pub. | Study | Country | Fuel Choice/ Type of
Cleaner Technology | Stat.
Model | Sample
size
(HH) | #
Var | | Adkins et al. | 2010 | Off-grid energy services for
the poor: Introducing LED
lighting in the Millennium
Villages Project in Malawi | Malawi | LED lanterns charged by solar panel | Probit | 68 | 7 | | Arthur et al. | 2010 | On the adoption of electricity as a domestic source by Mozambican households | Mozambique | Fuel Choice: Odds of
being a Charcoal
consumer | Logistic regression | 8377 | 10 | | Arthur et al. | 2010 | On the adoption of electricity as a domestic source by Mozambican households | Mozambique | Fuel Choice: Odds of being a kerosene consumer | Logistic
regression | 8377 | 10 | | Arthur et al. | 2010 | On the adoption of electricity as a domestic source by Mozambican households | Mozambique | Fuel Choice: Odds of being an electricity consumer | Logistic
regression | 8377 | 10 | | Arthur et al. | 2010 | On the adoption of electricity as a domestic source by Mozambican households | Mozambique | Fuel Choice: Odds of being an electricity consumer | Logistic
regression | 8377 | 12 | | Chaudhuri
and Pfaff | 2003 | Fuel-choice and indoor air quality: a household-level perspective on economic growth and the environment | Pakistan:
Urban and
Rural | Fuel choice to Modern
Fuels: Natural gas, LPG,
kerosene | Probit | 4106 | 5 | | Farsi et al. | 2007 | Fuel choices in Urban Indian
Households | India | Fuel Choices (alternative
in order: firewood,
kerosene, LPG) | Ordered
Probit | 41,593 | 17 | | Gebreegziab
her et al. | 2009 | Urban Energy Transition and
Technology Adoption: The
case of Tigrai, Northern
Ethiopia | Ethiopia | Fuel Choices: Wood | Probit | 350 | 9 | | Gebreegziab
her et al. | 2009 | Urban Energy Transition and
Technology Adoption: The
case of Tigrai, Northern
Ethiopia | Ethiopia | Fuel Choices: Charcoal | Probit | 350 | 9 | | Gebreegziab
her et al. | 2009 | Urban Energy Transition and
Technology Adoption: The
case of Tigrai, Northern
Ethiopia | Ethiopia | Fuel Choices: Kerosene | Probit | 350 | 9 | | Gebreegziab
her et al. | 2009 | Urban Energy Transition and
Technology Adoption: The
case of Tigrai, Northern
Ethiopia | Ethiopia | Fuel Choices: Electricity | Probit | 350 | 9 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for low income rural
household | Probit | 12296 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for median income rural
household | Probit | 46923 | 15 | | Author (s) | Date
of
Pub. | Study | Country | Fuel Choice/ Type of
Cleaner Technology | Stat.
Model | Sample
size
(HH) | #
Var | |-----------------------|--------------------|--|---------|--|----------------|------------------------|----------| | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for high income rural
household | Probit | 12742 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for low income rural
household | Probit | 12296 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for medium income rural
household | Probit | 46923 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for high income rural
household | Probit | 12742 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for low income rural
household | Probit | 12296 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for medium income rural
household | Probit | 46923 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for high income rural
household | Probit | 12742 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
low income rural
household | Probit | 12296 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
medium income rural
household | Probit | 46923 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
high income rural
household | Probit | 12742 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for low income urban
household | Probit | 7430 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for median income
urban household | Probit | 30937 | 15 | | Author (s) | Date
of
Pub. | Study | Country | Fuel Choice/ Type of
Cleaner Technology | Stat.
Model | Sample
size
(HH) | #
Var | |-----------------------|--------------------|---|---------|--|----------------|------------------------|----------| | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Fuelwood
for high income urban
household | Probit | 8810 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for low income urban
household | Probit | 7430 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for medium income
urban household | Probit | 30937 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Kerosene,
for high income urban
household | Probit | 8810 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and
environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for low income urban
household | Probit | 7430 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for medium income
urban household | Probit | 30937 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: Electricity,
for high income urban
household | Probit | 8810 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
low income urban
household | Probit | 7430 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
medium income urban
household | Probit | 30937 | 15 | | Gundimeda
& Köhlin | 2008 | Fuel demand elasticities for
energy and environmental
policies: Indian sample survey
evidence | India | Fuel Choices: LPG, for
high income urban
household | Probit | 8810 | 15 | | Gupta &
Köhlin | 2006 | Preferences for domestic fuel:
Analysis with socio-economic
factors and rankings in
Kolkata, India | India | Fuel Choice: Fuelwood | Probit | 500 | 16 | | Gupta &
Köhlin | 2006 | Preferences for domestic fuel:
Analysis with socio-economic
factors and rankings in
Kolkata, India | India | Fuel Choice: Coal | Probit | 500 | 16 | | | tal Mate | erial, Table 4. Fuel Choice An | alyses (n=135) | (Continued) | | | | |-------------------|--------------------|---|-------------------------|--|----------------|------------------------|----------| | Author (s) | Date
of
Pub. | Study | Country | Fuel Choice/ Type of
Cleaner Technology | Stat.
Model | Sample
size
(HH) | #
Var | | Gupta &
Köhlin | 2006 | Preferences for domestic fuel:
Analysis with socio-economic
factors and rankings in
Kolkata, India | India | Fuel Choice: Kerosene | Probit | 500 | 16 | | Gupta &
Köhlin | 2006 | Preferences for domestic fuel:
Analysis with socio-economic
factors and rankings in
Kolkata, India | India | Fuel Choice: LPG | Probit | 500 | 16 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Brazil - Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 3,568 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Brazil - Urban | Fuel Switching from
partial to full use of non-
solid fuel | Logit | 3,568 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | South Africa -
Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 4,412 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | South Africa -
Urban | Fuel Switching from
partial to full use of non-
solid fuel | Logit | 4,412 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Vietnam -
Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 1,729 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Vietnam -
Urban | Fuel Switching from partial to full use of non-solid fuel | Logit | 1,729 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Guatemala -
Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 3,387 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Guatemala -
Urban | Fuel Switching from
partial to full use of non-
solid fuel | Logit | 3,387 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Ghana -
Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 2,174 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Ghana -
Urban | Fuel Switching from
partial to full use of non-
solid fuel | Logit | 2,174 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Nepal -
Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 715 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Nepal -
Urban | Fuel Switching from
partial to full use of non-
solid fuel | Logit | 715 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | India - Urban | Fuel Switching from
partial use of solid fuel
to only using solid fuel | Logit | 46,886 | 7 | | Author (s) | Date | Study | Country | Fuel Choice/ Type of | Stat. | Sample | # | |------------------|------------|--|----------------|--|-----------|--------------|-----| | | of
Pub. | | | Cleaner Technology | Model | size
(HH) | Var | | Heltberg | 2004 | Fuel Switching: Evidence from | India - Urban | Fuel Switching from | Logit | 46,886 | 7 | | | | eight developing countries | | partial to full use of non- | | | | | | | | | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Brazil - Rural | Fuel Switching from | Logit | 1,078 | 7 | | | | eight developing countries | | partial use of solid fuel | | | | | | | | | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Brazil - Rural | Fuel Switching from | Logit | 1,078 | 7 | | | | eight developing countries | | partial to full use of non- | | | | | Holthous | 2004 | Fuel Switching, Fuldance from | South Africa - | solid fuel | Locit | 4 201 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from eight developing countries | Rural | Fuel Switching from
partial use of solid fuel | Logit | 4,301 | / | | | | eight developing countries | Kurai | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | South Africa - | Fuel Switching from | Logit | 4,301 | 7 | | Heitberg | 2004 | eight developing countries | Rural | partial to full use of non- | LOGIC | 4,301 | , | | | | eight developing countries | Marai | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Vietnam - | Fuel Switching from | Logit | 4,269 | 7 | | | | eight developing countries | Rural | partial use of solid fuel | 0 | ., | | | | | , , | | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Vietnam - | Fuel Switching from | Logit | 4,269 | 7 | | | | eight developing countries | Rural | partial to full use of non- | | | | | | | | | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Guatemala - | Fuel Switching from | Logit | 3,848 | 7 | | | | eight developing countries | Rural | partial use of solid fuel | | | | | | | | | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Guatemala - | Fuel Switching from | Logit | 3,848 | 7 | | | | eight developing countries | Rural | partial to full use of non- | | | | | | | | | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Ghana - Rural | Fuel Switching from | Logit | 3,758 | 7 | | | | eight developing countries | | partial use of solid fuel | | | | | I I a libla a na | 2004 | Fred Southables Friday a franc | Chana Dunal | to only using solid fuel | l a ait | 2.750 | 7 | | Heltberg | 2004 | Fuel Switching: Evidence from | Ghana - Rural | Fuel Switching from partial to full use of non- | Logit | 3,758 | / | | | | eight developing countries | | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Nenal - Rural | | Logit | 2,657 | 7 | | Heitberg | 2004 | eight developing countries | Nepai - Nurai | partial use of solid fuel | Logit | 2,037 | , | | | | eight developing countries | | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | Nepal - Rural | Fuel Switching from | Logit | 2,657 | 7 | | | | eight developing countries | | partial to full use of non- | 0 | _, | | | | | | | solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | India - Rural | Fuel Switching from | Logit | 70,474 | 7 | | | | eight developing countries | | partial use of solid fuel | | | | | | | | | to only using solid fuel | | | | | Heltberg | 2004 | Fuel Switching: Evidence from | India - Rural | Fuel Switching from | Logit | 70,474 | 7 | | | | eight developing countries | | partial to full use of non- | | | | | | | | | solid fuel | | | | | Heltberg | 2005 | Factors determining | Guatemala | Fuel Choices: Urban LPG | Multinom | 2,845 | 21 | | | | household fuel choice in | | only (relative to rural | ial logit | | | | | | Guatemala | | wood and LPG) | | | | | | | | | | | | | | Author (s) | Date | Study | Country | Fuel Choice/ Type of | Stat. | Sample | # | |-------------|------|------------------------------|-----------|-----------------------------|-----------|--------|-----| | | of | | | Cleaner Technology | Model | size | Var | | | Pub. | | | | | (HH) | | | Heltberg | 2005 | Factors determining | Guatemala | Fuel Choices: Rural LPG | Multinom | 3,385 | 21 | | | | household fuel choice in | | only (relative to rural | ial logit | | | | | | Guatemala | | wood and LPG) | | | | | Heltberg | 2005 | Factors determining | Guatemala | Fuel Choices: Rural | Multinom | 3,385 | 21 | | | | household fuel choice in | | Wood Only (relative to | ial logit | | | | | | Guatemala | | rural wood and LPG) | | | | |
Hosier and | 2005 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Gathered | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuel wood to electricity | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Gathered | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuel wood to kerosene | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: gathered | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuel wood to Transitional | | | | | | | | | fuels (i.e., coal and dung) | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Gathered | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuelwood to purchased | | | | | | | | | fuelwood | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Kerosene to | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | Electricity | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Transitional | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuels (i.e., coal and dung) | | | | | | | | | to Kerosene | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Purchased | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuelwood to kerosene | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Purchased | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuelwood to transitional | | | | | | | | | fuels (i.e., coal and | | | | | | | | | dung) | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Feul Choice: Transitional | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuels (i.e., coal and dung) | | | | | | | | | to Electricity | | | | | Hosier and | 1987 | Household Fuel Choice in | Zimbabwe | Fuel Choice: Purchased | Logit | 1865 | 10 | | Dowd | | Zimbabwe | | fuelwood to electricity | | | | | Jack | 2006 | Household behavior and | Peru | Wood Only | Pooled | 15922 | 13 | | | | energy demand: Evidence | | | ordered | | | | | | from Peru | | | probit | | | | Jack | 2006 | Household behavior and | Peru | Wood and Gas | Pooled | 15922 | 13 | | | | energy demand: Evidence | | | ordered | | | | | | from Peru | | | probit | | | | Jack | 2006 | Household behavior and | Peru | Gas Only | Pooled | 15922 | 13 | | | | energy demand: Evidence | | | ordered | | | | | | from Peru | | | probit | | | | Kavi Kumar | 1987 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 71074 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | Viswanathan | | relationship in India | | and coke), RURAL | | | | | Kavi Kumar | 2002 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 61696 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | anu | | macon an ponanci | | (| | | | | | | erial, Table 4. Fuel Choice An | | | | | | |---------------|------------|--------------------------------|--------------|---------------------------|-----------|--------------|-----| | Author (s) | Date | Study | Country | Fuel Choice/ Type of | Stat. | Sample | # | | | of
Pub. | | | Cleaner Technology | Model | size
(HH) | Var | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 63478 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | Viswanathan | | relationship in India | | and coke), RURAL | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 71033 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), RURAL | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 61640 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), RURAL | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 63307 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), RURAL | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 71074 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | Viswanathan | | relationship in India | | and coke), URBAN | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 61696 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | Viswanathan | | relationship in India | | and coke), URBAN | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Dirty" fuel | Probit | 63478 | 3 | | and | | indoor air pollution | | (firewood, dung, coal, | | | | | Viswanathan | | relationship in India | | and coke), URBAN | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 71033 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), URBAN | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 61640 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), URBAN | | | | | Kavi Kumar | 2007 | Changing structure of income | India | Fuel Choice: "Clean" fuel | Probit | 63307 | 3 | | and | | indoor air pollution | | (kerosene, gobar gas, | | | | | Viswanathan | | relationship in India | | LPG), URBAN | | | | | Kebede et al. | 2007 | Can the urban poor afford | Ethiopia | Fuel Choice: Modern | Regressio | 4836 | 2 | | | | modern energy? The case of | | Fuels (Kerosene, butane | n | | | | | | Ethiopia | | gas, electricity) | | | | | Kemmler | 2007 | Factors influencing houshold | India | Fuel Choice: Electricity | Probit | 59543 | 33 | | | | access to electricity in India | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Rural | Biomass | Tobit | 22583 | 12 | | al. | | Urban India: Are th Energy | | | | | | | | | Poor Also Income Poor? | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Rural | Kerosene | Tobit | 22583 | 12 | | al. | | Urban India: Are th Energy | | | | | | | | | Poor Also Income Poor? | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Rural | LPG | Tobit | 22583 | 12 | | al. | | Urban India: Are th Energy | | | | | | | | | Poor Also Income Poor? | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Rural | Electricity | Tobit | 22583 | 12 | | al. | | Urban India: Are th Energy | | - | | | | | | | Poor Also Income Poor? | | | | | | | Supplemental Material, Table 4. Fuel Choice Analyses (n=135) (Continued) Author (s) Date Study Country Fuel Choice/ Type of Stat. Samp | | | | | | | | | | | |---|------------|--|----------------|--|----------------------------------|------------------------|----------|--|--|--| | Author (s) | of
Pub. | Study | Country | Cleaner Technology | Model | Sample
size
(HH) | #
Vai | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Urban | Biomass | Tobit | 12625 | 12 | | | | | al. | 2010 | Urban India: Are th Energy Poor Also Income Poor? | iliula. Olbali | Diomass | TODIC | 12023 | 12 | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Urban | Kerosene | Tobit | 12625 | 12 | | | | | al. | | Urban India: Are th Energy Poor Also Income Poor? | | | | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Urban | LPG | Tobit | 12625 | 12 | | | | | al. | | Urban India: Are th Energy Poor Also Income Poor? | | | | | | | | | | Khandker et | 2010 | Energy Poverty in Rural and | India: Urban | Electricity | Tobit | 12625 | 12 | | | | | al. | | Urban India: Are th Energy Poor Also Income Poor? | | | | | | | | | | Lamarre- | 2011 | Household determinants and | Indonesia | Switching to clean fuel in | No fixed | 4698 | 13 | | | | | Vincent | | respiratory health impacts of fuel switching in Indonesia | | 2000 | effects | | | | | | | Louw | 2007 | Determinants of electricity
demand for newly electrfied
low-income African
households | South Africa | Fuel Choice: Electricity | Logarthmi
c
Regressio
n | 68 | 7 | | | | | McEachern | 2008 | Socio-geographic perception | Sri Lanka | Single Household Solar | Multivaria | 73 | 5 | | | | | and Hanson | 2000 | in the diffusion of innovation:
Solar energy technology in Sri
Lanka | JII EUIKU | System adoption in mature SHS adoption market villages (<=30 months since first SHS) | te linear
regression | villages | 3 | | | | | McEachern | 2008 | Socio-geographic perception | Sri Lanka | Single Household Solar | Multivaria | 47 | 5 | | | | | and Hanson | | in the diffusion of innovation:
Solar energy technology in Sri
Lanka | | System adoption in villages that newly adopted SHS (<30 months since first SHS) | te linear
regression | villages | | | | | | Ouedraogo | 2006 | Household energy
preferences for cooking in
urban Ouagadougou, Burkina
Faso | Burkina Faso | Fuel Choices: Natural
Gas | Multinom
ial Logit | 1,008 | 14 | | | | | Ouedraogo | 2006 | Household energy
preferences for cooking in
urban Ouagadougou, Burkina
Faso | Burkina Faso | Fuel Choices: Charcoal | Multinom
ial Logit | 1,008 | 14 | | | | | Ouedraogo | 2006 | Household energy
preferences for cooking in
urban Ouagadougou, Burkina
Faso | Burkina Faso | Fuel Choices: Firewood | Multinom
ial Logit | 1,008 | 14 | | | | | Ouedraogo | 2006 | Household energy
preferences for cooking in
urban Ouagadougou, Burkina
Faso | Burkina Faso | Fuel Choices:
Kerosene | Multinom
ial Logit | 1,008 | 14 | | | | | Peng | 2010 | Household level fuel switching in rural Hubei | China | Biomass | Logit | 401 | 8 | | | | | | al Mate | erial, Table 4. Fuel Choice An | alyses (n=135 |) (Continued) | | | | |-------------|------------|---|--------------------------|--|------------|--------------|-----| | Author (s) | Date | Study | Country | Fuel Choice/ Type of | Stat. | Sample | # | | | of
Pub. | | | Cleaner Technology | Model | size
(HH) | Var | | Rao & Reddy | 2007 | Variations in energy use by | India - rural | Fuel Choice: LPG over | Multinom | 70000 | 19 | | | | Indian households: An | with state | Firewood | ial Logit | | | | B 0 B . I I | 2007 | analysis of micro level data | dummies | F. J.Ch. J | | 70000 | 10 | | Rao & Reddy | 2007 | Variations in energy use by | India - rural | Fuel Choice: Kerosene | Multinom | 70000 | 19 | | | | Indian households: An | with state | over Firewood | ial Logit | | | | Rao & Reddy | 2007 | analysis of micro level data | dummies
India - urban | Fuel Choice: LPG over | Multinom | 48000 | 19 | | Rao & Reduy | 2007 | Variations in energy use by
Indian households: An | with state | Firewood | ial Logit | 46000 | 19 | | | | analysis of micro level data | dummies | riiewoou | iai Logit | | | | Rao & Reddy | 2007 | Variations in energy use by | India - urban | Fuel Choice: Kerosene | Multinom | 48000 | 19 | | Nao & Neddy | 2007 | Indian households: An | with state | over Firewood | ial Logit | 40000 | 19 | | | | analysis of micro level data | dummies | overrinewood | idi Logic | | | | Rebane and | 2011 | Knowledge and Adoption of | Nicaragua | Solar home system | Standard | 158 | 10 | | Barham | 2011 | Solar Home Systems in Rural | Micaragaa | adoption | Probit | 150 | 10 | | 2amam | | Nicaragua | | adoption. | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: Charcoal | Multilogit | 1000 | 9 | | , | | shifts in the domestic sector | India | over firewood | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: Kerosene | Multilogit | 1000 | 9 | | ŕ | | shifts in the domestic sector | India | over firewood | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: LPG over | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | Firewood | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: Electricity | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | over firewood | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice:Kerosene | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | over charcoal | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: LPG over | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | charcoal | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: Electricity | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | over charcoal | | | | | Reddy | 1995 | A multilogit model for fuel | Bangalore, | Fuel Choice: LPG over | Multilogit | 1000 | 9 | | | | shifts in the domestic sector | India | kerosene | | | | | Reddy | 1995 | A multilogit model for fuel shifts in the domestic sector | Bangalore,
India | Fuel Choice: Electricity over kerosene | Multilogit | 1000 | 9 | | Walekhwa et | 2000 | Biogas energy from family- | Uganda | Fuel Choice: Biogas | Binomial | 220 | 10 | | al. | 2009 | sized digesters in uganda: | Oganua | ruei Choice. Biogas | Logistic | 220 | 10 | | ai. | | Critical factros and policy | | | Regressio | | | | | | implications | | | n | | | | Yan | 2010 | The Theoretical and Empirical | China | Fuel choice: Coal over | Multinom | ? | 18 | | | 2010 | Analysis on the Compatibility | 3 | Electricity | ial logit | • | | | | | of Sustainable Development | | , | | | | | | | Strategies and Poverty | | | | | | | | | Reduction Policies at Micro | | | | | | | | | Level | | | | | | | | | | | | | | | | Author (s) | Date
of
Pub. | Study | Country | Fuel Choice/ Type of
Cleaner Technology | Stat.
Model | Sample
size
(HH) | #
Var | | |------------|--------------------|--|---------|---|-----------------------|------------------------|----------|--| | Yan | 2010 | The Theoretical and Empirical
Analysis on the Compatibility
of Sustainable Development
Strategies and Poverty
Reduction Policies at
MicroLevel | China | Fuel choice: LPG over
Electricity | Multinom
ial logit | ? | 18 | | | Yan | 2010 | The Theoretical and Empirical
Analysis on the Compatibility
of Sustainable Development
Strategies and Poverty
Reduction Policies at Micro
Level | China | Fuel choice: Wood Straw
over Electricity | Multinom
ial logit | ? | 18 | | | Yan | 2010 | The Theoretical and Empirical
Analysis on the Compatibility
of Sustainable Development
Strategies and Poverty
Reduction Policies at Micro
Level | China | Fuel choice: Coal over
Electricity | Multinom
ial logit | 4400 | 18 | | | Yan | 2010 | The Theoretical and Empirical
Analysis on the Compatibility
of Sustainable Development
Strategies and Poverty
Reduction Policies at Micro
Level | China | Fuel choice: LPG over
Electricity | Multinom
ial logit | 4400 | 18 | | | Yan | 2010 | The Theoretical and Empirical
Analysis on the Compatibility
of Sustainable Development
Strategies and Poverty
Reduction Policies at Micro
Level | China | Fuel choice: Wood Straw
over Electricity | Multinom
ial logit | 4400 | 18 | | Supplemental Material, Table 5. Results for Fuel Choice Analyses (n = 135) | Category | ry Demographics | | | | | | Socio-Economic Status (SES) | | | | | | | | | | | | Price | | | | | | | | |------------------------------------|-----------------|-------|---------|-------|--------|--------|-----------------------------|----------|-----------|------------|---------|------------|------------|-----------|-------|-------|------------|------------|------------|-------------|-----------|-------------|-------------|------------|--------------|--| | Variable | Age | Child | HH Size | Hindu | Muslim | emooul | # Rms | HH Educ. | Fem Educ. | Male Educ. | Fem. HH | Self Empl. | Agri. Lab. | Cas. Lab. | Urban | Rural | Soc. Marg. | Wood Price | Coal Price | Kero. Price | LPG Price | Elec. Price | Wood Avail. | LPG Avail. | Elec. Avail. | | | Included | 29 | 18 | 120 | 8 | 8 | 126 | 9 | 70 | 11 | 10 | 24 | 33 | 20 | 28 | 20 | 3 | 37 | 43 | 11 | 57 | 43 | 43 | 21 | 8 | 53 | | | Included
% | 21 | 13 | 89 | 6 | 6 | 93 | 7 | 52 | 8 | 7 | 18 | 24 | 15 | 21 | 15 | 2 | 27 | 32 | 8 | 42 | 32 | 32 | 16 | 6 | 39 | | | Positive
Signif. % | 38 | 56 | 32 | 25 | 25 | 67 | 56 | 49 | 64 | 10 | 54 | 12 | 20 | 21 | 60 | 0 | 14 | 37 | 27 | 26 | 16 | 19 | 5 | 50 | 64 | | | Positive
Insignif. % | 17 | 17 | 20 | 50 | 0 | 11 | 11 | 30 | 0 | 20 | 13 | 18 | 0 | 4 | 5 | 0 | 3 | 28 | 18 | 18 | 26 | 16 | 5 | 25 | 15 | | | Positive
Total % | 55 | 72 | 52 | 75 | 25 | 78 | 67 | 79 | 64 | 30 | 67 | 30 | 20 | 25 | 65 | 0 | 16 | 65 | 45 | 44 | 42 | 35 | 10 | 75 | 79 | | | Negative
Signif. % | 24 | 17 | 37 | 0 | 50 | 13 | 0 | 10 | 27 | 70 | 13 | 36 | 75 | 75 | 30 | 100 | 68 | 7 | 27 | 35 | 35 | 33 | 57 | 0 | 6 | | | Negative
Insignif. % | 21 | 11 | 12 | 25 | 25 | 9 | 33 | 11 | 9 | 0 | 21 | 33 | 5 | 0 | 5 | 0 | 16 | 28 | 27 | 21 | 23 | 33 | 33 | 25 | 15 | | | Negative
Total % | 45 | 28 | 48 | 25 | 75 | 22 | 33 | 21 | 36 | 70 | 33 | 70 | 80 | 75 | 35 | 100 | 84 | 35 | 55 | 56 | 58 | 65 | 90 | 25 | 21 | | | Signif. %
(included
studies) | 62 | 72 | 68 | 25 | 75 | 80 | 56 | 59 | 91 | 80 | 67 | 48 | 95 | 96 | 90 | 100 | 81 | 44 | 55 | 61 | 51 | 51 | 62 | 50 | 70 | | | Signif. %
(all
studies) | 13 | 10 | 61 | 1 | 4 | 75 | 4 | 30 | 7 | 6 | 12 | 12 | 14 | 20 | 13 | 2 | 22 | 14 | 4 | 26 | 16 | 16 | 10 | 3 | 27 | | Positive and negative percentages are calculated as (number of votes)/(number of studies including the variable). Abbreviations: HH Size = Household Size; # Rms= Number of rooms in house; HH Educ.= Household Education; Fem Educ.= Female Education; Male Educ.= Male Education; Female HH= Female Head of Household; Self Empl.=Self Employed; Agri. Lab.=Agricultural Laborer; Cas. Lab.=Casual Laborer; Soc. Marg.=Socially Marginalized Group; Credit Acc.= Access to Credit; Kero.Price= Price of Kerosene; Elec. Price=Price of Electricity; Wood Avail.=Wood Availability; LPG Avail.=LPG Availability; Elec. Avail.=Electricity Availability #### References Adkins E, Eapen S, Kaluwile F, Nair G, Modi V. 2010. Off-grid energy services for the poor: Introducing LED lighting in the Millennium Villages Project in Malawi. Energy Policy 38(2):1087-1097. Amacher G, Hyde W, Joshee BR. 1992. The Adoption of Consumption Technologies under Uncertainty: A Case of Improved Stoves in Nepal. J Econ Dev 17(2). Amacher GS, Hyde WF, Kanel KR. 1996. Household fuelwood demand and supply in Nepal's tarai and mid-hills: Choice between cash outlays and labor opportunity. World Dev 24(11):1725-1736. Arthur MdFSR, Zahran S, Bucini G. 2010. On the adoption of electricity as a domestic source by Mozambican households. Energy Policy 38(11):7235-7249. Chaudhuri S, Pfaff ASP. 2003. Fuel-choice and indoor air quality: a household-level perspective on economic growth and the environment. Department of Economics and School of International and Public Affairs, Columbia University. Damte A, Koch SF. 2011. Clean Fuel Saving Technology Adoption in Urban Ethiopia. (Department of Economics Working Paper Series). Pretoria: University of Pretoria. Edwards JHY, Langpap C.
2005. Startup Costs and the Decision to Switch from Firewood to Gas Fuel. Land Econ 81(4):570-586. El Tayeb Muneer S, Mukhtar Mohamed EW. 2003. Adoption of biomass improved cookstoves in a patriarchal society: an example from Sudan. Sci. Total Environ 307(1-3):259-266. Farsi M, Filippini M, Pachauri S. 2007. Fuel choices in urban Indian households. Environment and Development Economics 12(06):757-774. Gebreegziabher Z, Mekonnen A, Kassie M, Köhlin G. 2010. Urban Energy Transition and Technology Adoption: The Case of Tigrai, Northern Ethiopia. Gundimeda H, Köhlin G. 2008. Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence. Energy Economics 30(2):517-546. Gupta G, Köhlin G. 2006. Preferences for domestic fuel: Analysis with socio-economic factors and rankings in Kolkata, India. Ecological Economics 57(1):107-121. Heltberg R. 2004. Fuel switching: evidence from eight developing countries. Energy Economics 26(5):869-887. Heltberg R. 2005. Factors determining household fuel choice in Guatemala. Environment and Development Economics 10(03):337-361. Hosier RH, Dowd J. 1987. Household fuel choice in Zimbabwe: An empirical test of the energy ladder hypothesis. Resources and Energy 9(4):347-361. Jack DW. 2006. Household behavior and energy demand: Evidence from Peru [PhD Dissertation]. Cambridge: Harvard University. Kavi Kumar KS, Viswanathan B. 2007. Changing structure of income indoor air pollution relationship in India. Energy Policy 35(11):5496-5504. Kebede B, Bekele A, Kedir E. 2002. Can the urban poor afford modern energy? The case of Ethiopia. Energy Policy 30(11-12):1029-1045. Kemmler A. 2007. Factors influencing household access to electricity in India. Energy for Sustainable Development 11(4):13-20. Khandker SR, Barnes DF, Samad HA. 2010. Energy Poverty in Rural and Urban India: Are the Energy Poor Also Income Poor? (Policy Research Working Paper #5463). The World Bank. Lamarre-Vincent J. 2011. Household Determinants and Respiratory Health Impacts of Fuel Switching in Indonesia [Master of Public Policy Thesis]. Durham: Duke University. Louw K, Conradie B, Howells M, Dekenah M. 2008. Determinants of electricity demand for newly electrified low-income African households. Energy Policy 36(8):2812-2818. McEachern M, Hanson S. 2008. Socio-geographic perception in the diffusion of innovation: Solar energy technology in Sri Lanka. Energy Policy 36(7):2578-2590. Ouedraogo B. 2006. Household energy preferences for cooking in urban Ouagadougou, Burkina Faso. Energy Policy 34(18):3787-3795. Peng W, Hisham Z, Pan J. 2010. Household level fuel switching in rural Hubei. Energy for Sustainable Development 14(3):238-244. Pine K, Edwards R, Masera O, Schilmann A, Marrón-Mares A, Riojas-Rodríguez H. Adoption and use of improved biomass stoves in Rural Mexico. Energy for Sustainable Development In Press, Corrected Proof. Rao MN, Reddy BS. 2007. Variations in energy use by Indian households: An analysis of micro level data. Energy 32(2):143-153. Rebane KL, Barham BL. 2011. Knowledge and adoption of solar home systems in rural Nicaragua. Energy Policy 39(6):3064-3075. Reddy BS. 1995. A multilogit model for fuel shifts in the domestic sector. Energy 20(9):929-936. Walekhwa PN, Mugisha J, Drake L. 2009. Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications. Energy Policy 37(7):2754-2762. Wendland KJ, Pattanayak SK, Sills E. 2011. Democracy and Dictatorship: Comparing household innovation across the border of Benin and Togo. Raleigh, NC: North Carolina State University. Yan HJ. 2010. The theoretic and empirical analysis on the compatibility of sustainable development strategies and poverty reduction policies at micro level. Aix-en-Provence: Université de la Méditerranée Aix-Marseille II.